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Abstract-Reichardt’s analysis for heat transfer to turbulent flow in smooth pipe is extended to drag 
reducing viscoelastic fluids. Velocity profile expression by Deissler is modified to account for changes 
brought about by viscoelastic drag reducing fluids. The final correlation compares very favourably over 

a wide range of Prandtl (or Schmidt) numbers, with experimental data. 

NOMENCLATURE 

slope of logarithmic velocity profile in 
equation (9); 
intercept parameter defined in equation (9); 
integral defined in equation (6); 
specific heat; 

diameter of pipe; 
Deborah number Bu*~/v; 
eddy diffusivity for heat transfer; 
eddy diffusivity for momentum transfer; 

fanning friction factor, r&p V2 ; 
constant defined in equation (lo), 
numerical value is 3.0; 

constant in equation (8); 
Nusselt number; 
Prandtl number, C,p/k; 

thermal conductivity; 
heat flux: 

Reynolds number, DV/v; 

Stanton number, NulRePr; 

temperature; 
velocity at the center line of the pipe; 
time average local axial velocity; 

friction velocity; 
dimensionless velocity u/u*; 
average velocity; 

ratio of E,J.$,,; 

distance from the wall in the radial direction; 
dimensionless distance yu*/v. 

Greek symbols 

70, shear stress at the wall; 

P? density; 

V, kinematic viscosity; 

:: 
shear viscosity; 
relaxation time for Maxwell fluid; 

8 mr ratio of mean to maximum temperature 
difference; 

4 m, ratio V/U. 

*Present address: Department of Chemical Technology, 
University of Bombay, Matunga Road, Bombay-400019, 
India. 

INTRODUCTION 

DRAG reduction under turbulent flow conditions, has 
been obtained with very dilute solutions of polymers. 
Mechanistic interpretations of the phenomena have 
been centred around viscoelastic properties of these 
polymer solutions [l-3]. Many important aspects of 
the phenomena are reported in comprehensive manner 
by Hoyt [4] and Virk [5]. Heat transfer to these drag 
reducing polymer solutions is of importance for both 
theoretical and practical reasons. The heat or mass- 
transfer results will aid in understanding the fluid 

mechanics of the turbulent flow. Previous studies on 
heat transfer have indicated that reduction in heat 

transfer is much more conspicuous than reduction in 

momentum transfer [6-81. However, not many anal- 
yses account for the conspicuous reductions in heat 
transfer and the present paper is directed to this end. 

BACKGROUND OF THE PROBLEM 

The equations for momentum and heat transfer may 
be written respectively as: 

and 

+=(Eh+v/Pr)$. 
P 

Several authors have assumed different forms for the 
variation of the eddy diffusivities with distance from 
the wall and have given solution for predicting heat- 
transfer coefficient as a function of Reynolds and 
Prandtl numbers but one of the most significant 
analyses is that of Reichardt [9] because of minimal 
assumptions employed. These are merely that (i) the 
ratio of eddy diffusivity for heat to that for momentum 
transfer is constant and (ii) the heat flux varies linearly 
with radial position. Since details are available else- 
where [10-l l] his final result may be stated directly as: 

St = 
f ~2. x . ye, 

s 

U/II* 
l/& + (Pr. X- l)(f/2)“2 

du+ ’ (3) 

0 1 +XPrE,,,/v 
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The integral in the denominator of the above equation 
is denoted as “b” by Reichardt and the same notation 
will be followed here. Further, if one assumes : 

X = E,,/E,,, = 1.0 (4a) 

6, = 1.0 (4b) 

one obtains : 

f/2 
St = l/& + (Pr- l)(f/2)% 

(5) 

in which 

du+ 
b= 

l+Pr.E,/v’ 

Friend and Metzner [lo] determined this “b” func- 
tion experimentally for purely viscous fluids and 
correlated it as 

b = 11.8(Pr)-“3 (7) 

and also suggested that the average ratio of maximum 
to mean velocity over a wide range of Reynolds number 
may be taken as 1.2. 

Inspection of equation (6) would reveal that this “b” 
function can be evaluated if accurate information on 
either the velocity profile or equivalently on the vari- 
ation of the eddy diffusivity with distance from the 
wall is available. Many expressions for velocity profile 
for Newtonian fluids exist but most of them contain 
more than one adjustable parameter and this renders 
them useless for systems differing from Newtonian 
behaviour. However, the form of the velocity profile 
suggested by Deissler [ 1 l] is free from such difficulties 
and one single form describes the velocity profile for 
both the viscous sublayer and the transition zone. This 
form ofvelocity profile together with a semi logarithmic 
form for the turbulent core, can thus describe the entire 
field. 

ANALYSIS 

Deissler suggested the following expression for the 
velocity near the wall: 

s Y+ 

u+ = 
dy+ 

o l+n*U+1’+(l-e-“*“+‘*)’ (8) 

The velocity profile in the core region can be 
approximated in general form as: 

u+ = Alny++B. (9) 

Equation (8) approaches equation (9) at a value of 
y+ dependent upon n. Deissler found that with 
n = 0.124, equation (8) described the velocity profile in 
the region 0 < y+ < 26. For the turbulent core 
(y’ > 26) he assigned the value of 2.76 for the par- 
ameter A in equation (9). However, solutions of 
equation (8) for various values of n may be used to 
show that n = 0.127 described the velocity profile in 
the wall region upto y+ = 40 and enables use of 
equation (9) for the turbulent core with A = 2.5 and 
B = 5.0, the conventional values of these parameters. 

Equation (8) suggests that if the constant n decreases, 
the eddy diffusivity will also decrease. Recently, 

FIG. 1. Velocity profiles in the wall region as a function of 
the Diessler parameter n. 

Debrule [12] found that his heat-transfer results for 
Polyox solutions were correlated using values of n 
much below that for Newtonian fluids. Equation (8) 
was therefore solved for various values of n and the 
resulting velocity profiles are plotted in Fig. 1. It is seen 
that with decreases in n, the velocity profile in the wall 
region approaches that of the core at increasing values 
ofy+ and that the intercept B in equation (9) increases 
as this is done. For drag reducing fluids, the core region 
velocity profile has the same slope as that for 
Newtonian fluids but with higher values of intercept 
[13-161. Carrying this further, the function h in 
equation (6) was evaluated for different values of n 
using the velocity distribution from equation (8). Table 
1 lists the values of n with the corresponding values 
of the parameter B, Reichardt function b, and values 

Table 1. Influence of n on the parameters 
’ B, b and y: 

n B . 
b at 

Pr=lOOO + 
YCF 

0.127 5.0 1.571 40 
0.100 8.5 1.996 54 
0.080 12.5 2.490 70 
0.060 20.0 3.320 110 

of yc: at which velocity profile from the core region 
smoothly joins with equation (8). It is seen that the 
function b increases as n decreases. Increases in b over 
the value for Newtonian fluids clearly means that the 
heat-transfer coefficient will further be reduced which 
is in fact in agreement with the observed results of 
many investigators [6-S, 13, 17, 181. 

The relationship between the friction factor and 
Reynolds number, from the velocity profile, for the 
turbulent flow can be approximated as: 

+ 
Aln(ReJf)+B-Aln(2J2)-G 

J2 
-. (10) 

Seyer and Metzner [16] evaluated the parameter B 
for drag reducing fluids from velocity profile measure- 
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ments as well as from pressure drop data. They also 
measured the rheological properties of the same fluids 
and correlated the increase in B with viscoelastic 
properties of drag reducing fluids through a Deborah 
number defined as tV2/v. Thus, for each value of n 

in equation (8), a corresponding value of the Deborah 
number could be assigned through this relationship. 
Thus, the increases in “b” function can be correlated 
with corresponding Deborah number (De). For this 
purpose, it is decided that the function h could be 
split as: 

b = bo+bl (11) 

in which b. is the obtained value for Newtonian fluids 
with n = 0.127. Obviously, b. is a function of Prandtl 
number only. Solving equation (6) numerically for dif- 
ferent Prandtl numbers, it is possible to plot the values 
of b against Pr and approximate as 

b. = 9.2(Pr)-0.258. (12) 

The increase in b(b,) is due to the presence of 
Deborah number. Equation (6) was numerically solved 
for different values of n. Noting that each value of n 
corresponds to a Deborah number as discussed earlier, 
it is possible to obtain function b and therefore bl by 
subtracting b. from b. The results from these com- 
putations can be plotted as a function of Prandtl num- 
ber for a fixed value of Deborah number (fixed chosen 
value of n) and also as a function of Deborah number 
(different values of n) for a fixed Prandtl number. Thus, 
the computed results may be approximated as 

bl = 1.2(De)(Pr)-0.236. (13) 

Combining equations (5) and (1 l)-( 13), the final result 
for the Nusselt number may be written as: 

1 

FIG. 2. Comparison of experimental Nusselt numbers with 
predictions from equation (14). 

be safely done as shown by Kale [22]. Kale has 
satisfactorily correlated drag reduction data for 
rotating disc using polyethylene oxide (WSR 301) solu- 
tions. In the absence of actual friction factor data, 
either the knowledge of viscoelastic properties given 
by fluid relaxation time as a function of shear stress 
or measurement of friction factor under turbulent flow 
conditions at any two flow rates (i.e. wall shear stress) 
is sufficient to estimate the. Deborah number as 
suggested by Seyer and Metzner. As seen from Fig. 2, 
the predicted values from equation (14) are in good 
agreement with the experimental observations. Re- 
cently Dimant and Porch [23] have shown that the 

Nu= 
f/2.Re.Pr 

1.2 + (Pr- l)(f/2)‘/2 {9.2(Pr)-0.258 + 1.2(De)(Pr)-0.236} ’ 
(14) 

In this equation, the parameter l/4,,, has been retained at its Newtonian value of 1.2 because it will be close 
to this value for dilute polymer solutions of primary interest. Reduction in friction factor approaches the 
asymptote for maximum reduction for values of Deborah number 220. Therefore, it may be possible to write 
the asymptotic equation for Nusselt number as: 

Nu= 
f/2.Re.Pr 

1.2+(Pr-l)(f/2)‘i2~{9.2(Pr)-0~256+24(Pr)-0.236 ’ 
(15) 

COMPARISON WITH DATA 

Data from various sources [6-8, 12, 17-211 on heat 
and mass transfer are analysed and compared with 
predictions from equation (14). It is realized that 
equation (14) is, strictly speaking, for isothermal cases. 
Therefore, the experimental data showing small tem- 
perature changes only are considered for comparison’s 
sake. The Deborah numbers are calculated from actual 
friction factor data reported. Using equation (lo), the 
function B is calculated. Corresponding Deborah num- 
ber was evaluated using graphical relationship given 
by Seyer and Metzner [16]. Although Seyer and 
Metzner established this relationship using polyacryl- 
amide solutions, its extension to other polymers can 

thermal entry lengths for viscoelastic fluids are much 
larger compared to Newtonian fluids. The data sus- 
pected to be in the thermal entry zone are not con- 
sidered for the comparison with equation (14). 

The functional form of b for Newtonian fluids in 
equation (12) is different from that given by equation (7). 
The accuracy of the chosen form for the velocity profile, 
will play a significant role in the final form for b and 
the data at extremely high Prandtl numbers free from 
the effects due to roughness of the pipe can only decide 
the accuracy of above predictions for Newtonian fluids. 

For Newtonian fluids, the data of Mizushina et al. 
[21] show excellent agreement while data from Harriott 
and Hamilton [20] are consistently higher than pre- 
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dieted. The experimental technique used by the latter 
of the above two sources could have led to slight 
roughness at the dissolving wall and could have sig- 

nificant effect in enhancing mass transfer particularly 
at high Schmidt numbers. The electrolytic technique 

used by Mizushina et ul. is free from such a possibility. 
Their data compare more accurately with the predic- 
tions from equation (14). Recently, Hughmark [24] has 
developed a correlation from available data on heat 

and mass transfer to Newtonian fluids. valid over a 
much wider range of Prandtl number. [0.2 d Pr < 
lOOOOO]. His predictions compare very favourably with 
equation (14) for Newtonian fluids. 

At this point, a comparison of equation (14) could 
be made with other correlations. Most of the workers 

have used different empirical relationships for variation 
of eddy diffusivity with the distance from the wall. The 
usual form of these relationships is: 

&I - = tr(J’+)b’. 
\’ 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

Il. 

12. 

Different values of h’ have been used. Correlating the 
14. 

experimental data, Friend and Metzner have indicated 

b’ = 3.0. Similarly, Hughmark [25] and Wasan et al. 15 
[26] have shown that b’ = 3.0 is more consistent with 
experimental observations. Son and Hanratty [27] 16 
have, however, shown that limiting value of b’ close 
to the wall is 4.0. Equation (14) agrees with this value. 17 

Equation (14) is, as noted earlier, for isothermal 
conditions. The Sieder-Tate type correction for non 
isothermal conditions may be used but no attempt was 

18 

done to test this due to lack of sufficient and accurate 

data. 19. 

CONCLUSIONS 

Equation (14) covers a wide range of Prandtl number 
20. 

in comparison with many other available correlations. 
Analogous mass-transfer problem is of importance 21. 

when drag reducing additive is used in the boundary 

layer only: it helps in determining how quickly it will 
be transported away. 22. 
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ANALYSE DE LA CONVECTION THERMIQUE TURBULENTE DANS 
LES FLUIDES A REDUCTION DE TRAINEE 

R&sum& L’analyse par Reichardt de la convection thermique turbulente dans les tubes lisses est ttendue 
aux fluides viscoelastiques rtducteurs de trainee. L’expression donnee par Deissler pour le profil des 
vitesses est modifiee pour tenir compte des changements apportes par ces fluides. La formule finale 
s’accorde favorablement, pour un grand domaine du nombre de Prandtl (ou de Schmidt), avec les 

rtsultats exptrimentaux. 
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EINE UNTERSUCHUNG DES WARMEOBERGANGS BE1 TURBULENTER 
STRC)MUNG WIDERSTANDSMINDERNDER FLUIDE 

Zusammenfassung-Die vop Reichardt aufgestellte Theorie tiber den Wlrmeiibergang an turbulente 
Striimungen in glatten Rohren wird auf widerstandsmindernde, viskoelastische Fluide ausgedehnt. Der 

Deissler-Ansatz fur das Geschwindigkeitsprofil wird so modifiziert, dal3 er den durch widerstands- 
mindernde, viskoelastische Fluide verursachten Abweichungen Rechnung tragt. Fur einen grol3en 
Bereich von Pr(Sc)-Zahlen stimmt die schlieglich gefundene Korrelatiqn gut mit Versuchsdaten uberein. 

AHAJII43 I-IEPEHOCA TEIIJIA K TYP6YJIEHTHOMY DOTOKY XM~KOCTH 
C I-lOJIMMEPHbIMM AO6ABKAMM 

AmroTaqim-MeTon PehxapnTa AJIX ucCnenOaaHua nepeHoca Tenna B Tpy6e c rnaruoibni CTeH- 
KaMH paCnpOCTpaHeH Ha aHanH3 yMeHbmeHHa COnpOTHBJteHHR npu TeWHHA BR3KOYtlPYNfX WCWA- 

KoCTefi. &XA.iTOxCeHHbrR AaBcnepoM npO@Hnb CKOpOCTli MOLW~WHpOBaH C UenbbJ Y’ieTa 3~~KTB 

yMeHbmeHuR COnpOTHBneHHI 38 CWT B5l3KOytlpyr~X CHJI. nOJQ”ieHHOe COOTHOLLleHWe naeT XOPOUI~ 

COrnaCHe C 3KCnepuMeHTanbHblMu JlaHHblMu B UJWPOKOM JUialla30H’?. WiCW npaHLlTIWI (~MHLITZI). 
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